HCNN: A Neural Network Model for Combining Local and Global Features Towards Human-Like Classification

Author:

Zhang Tielin1,Zeng Yi12,Xu Bo12

Affiliation:

1. Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P. R. China

2. CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, P. R. China

Abstract

Brain-inspired algorithms such as convolutional neural network (CNN) have helped machine vision systems to achieve state-of-the-art performance for various tasks (e.g. image classification). However, CNNs mainly rely on local features (e.g. hierarchical features of points and angles from images), while important global structured features such as contour features are lost. Global understanding of natural objects is considered to be essential characteristics that the human visual system follows, and for developing human-like visual systems, the lost of consideration from this perspective may lead to inevitable failure on certain tasks. Experimental results have proved that well-trained CNN classifier cannot correctly distinguish fooling images (in which some local features from the natural images are chaotically distributed) from natural images. For example, a picture that is composed of yellow–black bars will be recognized as school bus with very high confidence by CNN. On the contrary, human visual system focuses on both the texture and contour features to form representation of images and would not mis-take them. In order to solve the upper problem, we propose a neural network model, named as histogram of oriented gradient (HOG) improved CNN (HCNN), that combines local and global features towards human-like classification based on CNN and HOG. The experimental results on MNIST datasets and part of ImageNet datasets show that HCNN outperforms traditional CNN for object classification with fooling images, which indicates the feasibility, accuracy and potential effectiveness of HCNN for solving image classification problem.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An End-to-End Video Coding Method via Adaptive Vision Transformer;International Journal of Pattern Recognition and Artificial Intelligence;2024-01-29

2. AMFF-net: adaptive multi-modal feature fusion network for image classification;Multimedia Tools and Applications;2023-07-21

3. A multilevel recognition of Meitei Mayek handwritten characters using fusion of features strategy;The Visual Computer;2023-01-31

4. Global-first Training Strategy with Convolutional Neural Networks to Improve Scale Invariance;Communications in Computer and Information Science;2023

5. Research on neural network algorithm in artificial intelligence recognition;Sustainable Energy Technologies and Assessments;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3