Super-Resolution Based on Clustered Examples

Author:

Tu Ching Ting1,Lin Hsiau Wen2,Lin Hwei-Jen1,Li Yue Shen1

Affiliation:

1. Department of Computer Science and Information Engineering, Tamkang University, New Taipei City, Taiwan, R.O.C.

2. Department of Information Management, Chihlee Institute of Technology, New Taipei City, Taiwan, R.O.C.

Abstract

In this paper, we propose an improved version of the neighbor embedding super-resolution (SR) algorithm proposed by Chang et al. [Super-resolution through neighbor embedding, in Proc. 2004 IEEE Computer Society Conf. Computer Vision and Pattern Recognition(CVPR), Vol. 1 (2004), pp. 275–282]. The neighbor embedding SR algorithm requires intensive computational time when finding the K nearest neighbors for the input patch in a huge set of training samples. We tackle this problem by clustering the training sample into a number of clusters, with which we first find for the input patch the nearest cluster center, and then find the K nearest neighbors in the corresponding cluster. In contrast to Chang’s method, which uses Euclidean distance to find the K nearest neighbors of a low-resolution patch, we define a similarity function and use that to find the K most similar neighbors of a low-resolution patch. We then use local linear embedding (LLE) [S. T. Roweis and L. K. Saul, Nonlinear dimensionality reduction by locally linear embedding, Science 290(5500) (2000) 2323–2326] to find optimal coefficients, with which the linear combination of the K most similar neighbors best approaches the input patch. These coefficients are then used to form a linear combination of the K high-frequency patches corresponding to the K respective low-resolution patches (or the K most similar neighbors). The resulting high-frequency patch is then added to the enlarged (or up-sampled) version of the input patch. Experimental results show that the proposed clustering scheme efficiently reduces computational time without significantly affecting the performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Super-Resolution Reconstruction from Single Image Based on Join Operation in Granular Computing;International Journal of Pattern Recognition and Artificial Intelligence;2017-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3