A SURVEY OF CLUSTERING ENSEMBLE ALGORITHMS

Author:

VEGA-PONS SANDRO1,RUIZ-SHULCLOPER JOSÉ1

Affiliation:

1. Advanced Technologies Application Center 7a # 21812, Siboney, Havana 12200, Cuba

Abstract

Cluster ensemble has proved to be a good alternative when facing cluster analysis problems. It consists of generating a set of clusterings from the same dataset and combining them into a final clustering. The goal of this combination process is to improve the quality of individual data clusterings. Due to the increasing appearance of new methods, their promising results and the great number of applications, we consider that it is necessary to make a critical analysis of the existing techniques and future projections. This paper presents an overview of clustering ensemble methods that can be very useful for the community of clustering practitioners. The characteristics of several methods are discussed, which may help in the selection of the most appropriate one to solve a problem at hand. We also present a taxonomy of these techniques and illustrate some important applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 423 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3