Affiliation:
1. Advanced Technologies Application Center 7a # 21812, Siboney, Havana 12200, Cuba
Abstract
Cluster ensemble has proved to be a good alternative when facing cluster analysis problems. It consists of generating a set of clusterings from the same dataset and combining them into a final clustering. The goal of this combination process is to improve the quality of individual data clusterings. Due to the increasing appearance of new methods, their promising results and the great number of applications, we consider that it is necessary to make a critical analysis of the existing techniques and future projections. This paper presents an overview of clustering ensemble methods that can be very useful for the community of clustering practitioners. The characteristics of several methods are discussed, which may help in the selection of the most appropriate one to solve a problem at hand. We also present a taxonomy of these techniques and illustrate some important applications.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
423 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献