Empirical Comparison of Various Discretization Procedures

Author:

Berka Petr1,Bruha Ivan2

Affiliation:

1. Laboratory of Intelligent Systems, Prague University of Economics, W. Churchill Sq. 4, Prague CZ-l13067, Republic of Czech

2. Department of Computer Science and Systems, McMaster University, Hamilton, Ont., Canada L8S4K1, Canada

Abstract

The genuine symbolic machine learning (ML) algorithms are capable of processing symbolic, categorial data only. However, real-world problems, e.g. in medicine or finance, involve both symbolic and numerical attributes. Therefore, there is an important issue of ML to discretize (categorize) numerical attributes. There exist quite a few discretization procedures in the ML field. This paper describes two newer algorithms for categorization (discretization) of numerical attributes. The first one is implemented in the KEX (Knowledge EXplorer) as its preprocessing procedure. Its idea is to discretize the numerical attributes in such a way that the resulting categorization corresponds to KEX knowledge acquisition algorithm. Since the categorization for KEX is done "off-line" before using the KEX machine learning algorithm, it can be used as a preprocessing step for other machine learning algorithms, too. The other discretization procedure is implemented in CN4, a large extension of the well-known CN2 machine learning algorithm. The range of numerical attributes is divided into intervals that may form a complex generated by the algorithm as a part of the class description. Experimental results show a comparison of performance of KEX and CN4 on some well-known ML databases. To make the comparison more exhibitory, we also used the discretization procedure of the MLC++ library. Other ML algorithms such as ID3 and C4.5 were run under our experiments, too. Then, the results are compared and discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. USING THE LISP-MINER SYSTEM FOR CREDIT RISK ASSESSMENT;Neural Network World;2016

2. Discretizing Numerical Attributes in Decision Tree for Big Data Analysis;2014 IEEE International Conference on Data Mining Workshop;2014-12

3. Discretization;Intelligent Systems Reference Library;2014-08-31

4. Data accuracy's impact on segmentation performance: Benchmarking RFM analysis, logistic regression, and decision trees;Journal of Business Research;2014-01

5. A Survey of Discretization Techniques: Taxonomy and Empirical Analysis in Supervised Learning;IEEE Transactions on Knowledge and Data Engineering;2013-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3