FACE RECOGNITION USING SUPPORT VECTOR MACHINES WITH LOCAL CORRELATION KERNELS

Author:

KIM KWANG IN1,KIM JIN HYUNG1,JUNG KEECHUL2

Affiliation:

1. Department of Computer Science, Korea Advanced Institute of Science and Technology, Taejon, Korea

2. School of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Korea

Abstract

This paper presents a real-time face recognition system. For the system to be real time, no external time-consuming feature extraction method is used, rather the gray-level values of the raw pixels that make up the face pattern are fed directly to the recognizer. In order to absorb the resulting high dimensionality of the input space, support vector machines (SVMs), which are known to work well even in high-dimensional space, are used as the face recognizer. Furthermore, a modified form of polynomial kernel (local correlation kernel) is utilized to take account of prior knowledge about facial structures and is used as the alternative feature extractor. Since SVMs were originally developed for two-class classification, their basic scheme is extended for multiface recognition by adopting one-per-class decomposition. In order to make a final classification from several one-per-class SVM outputs, a neural network (NN) is used as the arbitrator. Experiments with ORL database show a recognition rate of 97.9% and speed of 0.22 seconds per face with 40 classes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3