Enhancement of Nonuniformly Illuminated Underwater Images

Author:

Mathur Monika1ORCID,Goel Nidhi1ORCID

Affiliation:

1. Department of Electronics and Communication Engineering, Indira Gandhi Delhi Technical University for Women, New Delhi 110006, Delhi, India

Abstract

Underwater image capturing is a challenging task due to attenuation of light in water. Scattering and absorption are the results of light attenuation which lead to faded colors and reduced contrast of images, respectively. To deal with these issues and to provide better visual quality image, various enhancement methods have been proposed. This paper proposes the Dual Domain-based Underwater Image Enhancement (DDUIE) method. DDUIE method provides contrast stretching in approximation band of discrete wavelet transformed image followed by intensity adjustment of different color channels in spatial domain. To further improve the color quality, the image is processed in HSV (Hue–Saturation–Value) color space. Result analysis indicates better results for DDUIE method over state-of-the-art methods. Subjective results of DDUIE method show minimization of the bluish-green effect and reduction of nonuniform illumination up to a certain extent. These lead to enhanced color and image details. Quantitative results show that the Underwater Image Quality Measure (UIQM) and Underwater Color Image Quality Evaluation (UCIQE) values between 1 and 2 and between 0 and 1 have been achieved, respectively, which significantly illustrate that images have been enhanced efficiently and also entropy values between 7 and 8 depict the effectiveness of the proposed method in terms of image details.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3