Tsallis Entropy Segmentation and Shape Feature-based Classification of Defects in the Simulated Magnetic Flux Leakage Images of Steam Generator Tubes

Author:

Daniel Jackson1ORCID,Abudhahir A.2,Paulin J. Janet3

Affiliation:

1. Electronics and Instrumentation Engineering Department, National Engineering College, K. R. Nagar, Kovilpatti 628503, India

2. Electrical and Electronics Engineering Department, Vel Tech Rangarajan Dr. Sakunthala R&D, Institute of Science and Technology, Chennai, India

3. Engineering Department, Insultec International(s) Pvt Ltd, Singapore

Abstract

Early detection of water or steam leaks into sodium in the steam generator units of nuclear reactors is an important requirement from safety and economic considerations. Automated defect detection and classification algorithm for categorizing the defects in the steam generator tube (SGT) of nuclear power plants using magnetic flux leakage (MFL) technique has been developed. MFL detection is one of the most prevalent methods of pipeline inspection. Comsol 4.3a, a multiphysics modeling software has been used to obtain the simulated MFL defect images. Different thresholding methods are applied to segment the defect images. Performance metrics have been computed to identify the better segmentation technique. Shape-based feature sets such as area, perimeter, equivalent diameter, roundness, bounding box, circularity ratio and eccentricity for defect have been extracted as features for defect detection and classification. A feed forward neural network has been constructed and trained using a back-propagation algorithm. The shape features extracted from Tsallis entropy-based segmented MFL images have been used as inputs for training and recognizing shapes. The proposed method with Tsallis entropy segmentation and shape-based feature set has yielded the promising results with detection accuracy of 100% and average classification accuracy of 96.11%.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3