Affiliation:
1. Av. San Claudio and 18 sur, Col. Jardines de San Manuel, Puebla, Puebla C. P. 72570, México
2. Laboratory of Medical Images, Av. 31 Oriente 210, Puebla, Puebla C. P. 72530, Mexico
Abstract
Skeletal maturity estimation is an important medical procedure in the early diagnosis of growth disorders. Traditionally, it is performed by an expert physician or radiologist who determines it based on a visual subjective inspection, the approximated bone age of the child. This task is time consuming and is usually dependent on the judgment of each particular physician. Therefore, automated methods are extremely valuable and desirable. In this paper, we propose and describe an automatic method to estimate skeletal maturity through a supervised and incremental learning approach. Our method determines bone age by comparing aligned images with a [Formula: see text]–[Formula: see text] regression classifier. Here, we have solved the difficult task of image alignment by designing a radiological-hand specific Active Appearance Model, which was developed from a varied set of hand-labeled radiological images. By using this active model, our system constructs its own learned database by increasing a set of shape-aligned training images which are incrementally stored. Thus, when a test image arrives at the system, the alignment process is performed before the classification task takes place. For that purpose, we designed an original layout of landmarks to be located in representative regions of the radiographical image of the hand. Our results show that it is possible to use pixels directly as classification features as long as training and testing images have been previously aligned in shape and pose.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献