PROGRESS IN VERIFICATION OF SKILLFULLY SIMULATED HANDWRITTEN SIGNATURES

Author:

AMMAR MAAN1

Affiliation:

1. Damascus University, Faculty of Mechanical and Electrical Engineering, Department of Electronics, P.O. Box 86, Damascus, Syria

Abstract

This paper compares the performances of parametric and reference pattern based features (RPBFs) in the verification of skillfully simulated handwritten signatures. The comparison shows that RPBFs significantly improve results and give about 90% correct verification using only shape features. The performance of the used shape features is independent of the signature shape, language and position in the document. The careful analysis of the experimental results of using RPBFs in verification has led to the conclusion that two-dimensional RPBFs will give much better performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RAISING THE PERFORMANCE OF AUTOMATIC SIGNATURE VERIFICATION OVER THAT OBTAINABLE BY USING THE BEST FEATURE SET;International Journal of Pattern Recognition and Artificial Intelligence;2011-03

2. Off-line Signature Verification by Matching with a 3D Reference Knowledge Image — From Research to Actual Application;Pattern Recognition, Machine Intelligence and Biometrics;2011

3. An improved feature extraction method for individual offline handwritten digit recognition;2010 8th World Congress on Intelligent Control and Automation;2010-07

4. A different approach to off-line handwritten signature verification using the optimal dynamic time warping algorithm;Digital Signal Processing;2008-11

5. MATCHING ALGORITHM USING WAVELET THINNING FEATURES FOR OFFLINE SIGNATURE VERIFICATION;International Journal of Wavelets, Multiresolution and Information Processing;2007-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3