Animal: Validation and Applications of Nonlinear Registration-Based Segmentation

Author:

Collins D. L.1,Evans A. C.1

Affiliation:

1. Montreal Neurological Institute, McGill University, McConnell Brain Imaging Centre, 3801 University St., Montreal, Canada H3A 2B4, Canada

Abstract

Magnetic resonance imaging (MRI) has become the modality of choice for neuro-anatomical imaging. Quantitative analysis requires the accurate and reproducible labeling of all voxels in any given structure within the brain. Since manual labeling is prohibitively time-consuming and error-prone we have designed an automated procedure called ANIMAL (Automatic Nonlinear Image Matching and Anatomical Labeling) to objectively segment gross anatomical structures from 3D MRIs of normal brains. The procedure is based on nonlinear registration with a previously labeled target brain, followed by numerical inverse transformation of the labels to the native MRI space. Besides segmentation, ANIMAL has been applied to non-rigid registration and to the analysis of morphometric variability. In this paper, the nonlinear registration approach is validated on five test volumes, produced with simulated deformations. Experiments show that the ANIMAL recovers 64% of the nonlinear residual variability remaining after linear registration. Segmentations of the same test data are presented as well. The paper concludes with two applications of ANIMAL using real data. In the first, one MRI volume is nonlinearly matched to a second and is automatically segmented using labels, predefined on the second MRI volume. The automatic segmentation compares well with manual labeling of the same structures. In the second application, ANIMAL is applied to seventeen MRI data sets, and a 3D map of anatomical variability estimates is produced. The automatic variability estimates correlate well (r =0.867, p = 0.01) with manual estimates of inter-subject variability.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 286 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3