A SEGMENTATION-FREE RECOGNITION OF HANDWRITTEN TOUCHING NUMERAL PAIRS USING MODULAR NEURAL NETWORK

Author:

CHOI SOON-MAN1,OH Il-SEOK2

Affiliation:

1. Division of Electrical, Electronics and Information Engineering, Wonkwang University, Iksan, Chonbuk 570-754, Korea

2. Department of Computer Science, Chonbuk National University, Chonju, Chonbuk 561-756, Korea

Abstract

The conventional approach to the recognition of handwritten touching numeral pairs uses a process with two steps; splitting the touching numerals and recognizing individual numerals. It shows a limitation mainly due to a large variation in touching styles between two numerals. In this paper, we adopt the segmentation-free approach, which regards a touching numeral pair as an atomic pattern. Two important issues are raised, i.e. solving the large-set classification and constructing a large-size training set. For the 100-class classification, we use a modular neural network which consists of 100 separate subnetworks. We construct the training set with a balance among 100 classes and using a sufficient amount by extracting actual samples from a numeral database and synthesizing samples with a scheme of forcing two numerals to touch. The experimental results show a promising performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Historical digit recognition using CNN: a study with English handwritten digits;Sādhanā;2024-01-23

2. End-to-End Approach for Recognition of Historical Digit Strings;Document Analysis and Recognition – ICDAR 2021;2021

3. COST-SENSITIVE NEURAL NETWORK CLASSIFIERS FOR POSTCODE RECOGNITION;International Journal of Pattern Recognition and Artificial Intelligence;2012-08

4. Data-driven decomposition for multi-class classification;Pattern Recognition;2008-01

5. A synthetic database to assess segmentation algorithms;Eighth International Conference on Document Analysis and Recognition (ICDAR'05);2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3