Multiple-Object Detection and Segmentation Based on Deep Learning in High-Resolution Video Using Mask-RCNN

Author:

Rajjak Shaikh Shakil Abdul1ORCID,Kureshi A. K.1

Affiliation:

1. Research Scholar Department of Electronics & Telecommunication, Matoshri College of Engineering & Research Centre, Nashik, Savitribai Phule Pune University, Pune, India

Abstract

Imaging sensors with higher resolution and higher frame rates are becoming more popular for wide-area video surveillance (VS) and other applications as technology advances Using Mask-RCNN, we proposed Multiple-Object Detection and Segmentation in High-Resolution Video based on Deep Learning. The ResNet-50 ResNet-101 is used as the backbone in the proposed R-CNN Mask FPN model. The deep residual network’s design overcomes the problem of lower learning efficiency due to the network’s deepening. To reach the objective of the smallest overall error, the deep residual network divided the training series into one training block, minimizing the error of each block. It is roughly divided into five convolutional layer stages. The output scale is cut in half at each point. We used mixed precision FP16 and FP32 for training the model and achieved great speed in training time reduction in inference time for object. The COCO 2014 data set is used to train and validate the proposed model with mixed precision, leading to faster performance. The results of the experiments show that the proposed model can run at 30–48 frames per second with 85% accuracy.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3