FINDING THE SHORTEST PATHS ON SURFACES BY FAST GLOBAL APPROXIMATION AND PRECISE LOCAL REFINEMENT

Author:

KIMMEL RON1,KIRYATI NAHUM2

Affiliation:

1. Lawrence Berkeley Laboratory, Mailstop 50A-2152, University of California, Berkeley, CA 94720, USA

2. Department of Electrical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

Abstract

Finding the shortest path between points on a surface is a challenging global optimization problem. It is difficult to devise an algorithm that is computationally efficient, locally accurate and guarantees to converge to the globally shortest path. In this paper a two stage coarse-to-fine approach for finding the shortest paths is suggested. In the first stage the algorithm of Ref. 10 that combines a 3D length estimator with graph search is used to rapidly obtain an approximation to the globally shortest path. In the second stage the approximation is refined to become a shorter geodesic curve, i.e., a locally optimal path. This is achieved by using an algorithm that deforms an arbitrary initial curve ending at two given surface points via geodesic curvature shortening flow. The 3D curve shortening flow is transformed into an equivalent 2D one that is implemented using an efficient numerical algorithm for curve evolution with fixed end points, introduced in Ref. 9.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3