IDENTIFICATION AND MATCHING OF PLANES IN A PAIR OF UNCALIBRATED IMAGES

Author:

BOUFAMA B. S.1,O'CONNELL D. J.1

Affiliation:

1. School of Computer Science, University of Windsor, Windsor, Ontario, N9B 3P4, Canada

Abstract

In this paper, we propose a new method to simultaneously achieve segmentation and dense matching in a pair of stereo images. In contrast to conventional methods that are based on similarity or correlation techniques, this method is based on geometry, and uses correlations only on a limited number of key points. Stemming from the observation that our environment is abundant in planes, this method focuses on segmentation and matching of planes in an observed scene. Neither prior knowledge about the scene nor camera calibration are needed. Using two uncalibrated images as inputs, the method starts with a rough identification of a potential plane, defined by three points only. Based on these three points, a plane homography is then calculated and, used for validation. Starting from a seed region defined by the original three points, the method grows the current region by successive move/confirmation steps until occlusions and/or surface discontinuity occur. In this case, the homography-based mapping of points between the two images will not be valid anymore. This condition is detected by the correlation, used in the confirmation process. In particular, this method grows a region even across different colors as long as the region is planar. Experiments on real images validated our method and showed its capability and performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient object detection and tracking in video sequences;Journal of the Optical Society of America A;2012-05-21

2. Real-time object detection and tracking in video sequences;Intelligent Robots and Computer Vision XXVII: Algorithms and Techniques;2010-01-17

3. A featureless and stochastic approach to on-board stereo vision system pose;Image and Vision Computing;2009-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3