FORESTS OF PROBABILITY ESTIMATION TREES

Author:

BOSTRÖM HENRIK1

Affiliation:

1. Department of Computer and Systems Sciences, Stockholm University, Forum 100, 164 40, Kista, Sweden

Abstract

Probability estimation trees (PETs) generalize classification trees in that they assign class probability distributions instead of class labels to examples that are to be classified. This property has been demonstrated to allow PETs to outperform classification trees with respect to ranking performance, as measured by the area under the ROC curve (AUC). It has further been shown that the use of probability correction improves the performance of PETs. This has lead to the use of probability correction also in forests of PETs. However, it was recently observed that probability correction may in fact deteriorate performance of forests of PETs. A more detailed study of the phenomenon is presented and the reasons behind this observation are analyzed. An empirical investigation is presented, comparing forests of classification trees to forests of both corrected and uncorrected PETS on 34 data sets from the UCI repository. The experiment shows that a small forest (10 trees) of probability corrected PETs gives a higher AUC than a similar-sized forest of classification trees, hence providing evidence in favor of using forests of probability corrected PETs. However, the picture changes when increasing the forest size, as the AUC is no longer improved by probability correction. For accuracy and squared error of predicted class probabilities (Brier score), probability correction even leads to a negative effect. An analysis of the mean squared error of the trees in the forests and their variance, shows that although probability correction results in trees that are more correct on average, the variance is reduced at the same time, leading to an overall loss of performance for larger forests. The main conclusions are that probability correction should only be employed in small forests of PETs, and that for larger forests, classification trees and PETs are equally good alternatives.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Venn predictors using random forests;Machine Learning;2018-08-20

2. Accurate parameter estimation for Bayesian network classifiers using hierarchical Dirichlet processes;Machine Learning;2018-05-22

3. Accelerating difficulty estimation for conformal regression forests;Annals of Mathematics and Artificial Intelligence;2017-03-01

4. Predicting Adverse Drug Events Using Heterogeneous Event Sequences;2016 IEEE International Conference on Healthcare Informatics (ICHI);2016-10

5. Generalized random shapelet forests;Data Mining and Knowledge Discovery;2016-07-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3