SOFT-ASSIGNMENT RANDOM-FOREST WITH AN APPLICATION TO DISCRIMINATIVE REPRESENTATION OF HUMAN ACTIONS IN VIDEOS

Author:

BURGHOUTS GERTJAN J.1

Affiliation:

1. TNO, Intelligent Imaging, Oude Waalsdorperweg 63, 2597 AK, The Hague, The Netherlands

Abstract

The bag-of-features model is a distinctive and robust approach to detect human actions in videos. The discriminative power of this model relies heavily on the quantization of the video features into visual words. The quantization determines how well the visual words describe the human action. Random forests have proven to efficiently transform the features into distinctive visual words. A major disadvantage of the random forest is that it makes binary decisions on the feature values, and thus not taking into account uncertainties of the values. We propose a soft-assignment random forest, which is a generalization of the random forest, by substitution of the binary decisions inside the tree nodes by a sigmoid function. The slope of the sigmoid models the degree of uncertainty about a feature's value. The results demonstrate that the soft-assignment random forest improves significantly the action detection accuracy compared to the original random forest. The human actions that are hard to detect — because they involve interactions with or manipulations of some (typically small) item — are structurally improved. Most prominent improvements are reported for a person handing, throwing, dropping, hauling, taking, closing or opening some item. Improvements are achieved for the state-of-the-art on the IXMAS and UT-Interaction datasets by using the soft-assignment random forest.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Linear Predictive Coefficients-Based Feature to Identify Top-Seven Spoken Languages;International Journal of Pattern Recognition and Artificial Intelligence;2019-09-23

2. Viewpoint projection based deep feature learning for single and dyadic action recognition;Expert Systems with Applications;2018-08

3. Separating Indic Scripts with matra for Effective Handwritten Script Identification in Multi-Script Documents;International Journal of Pattern Recognition and Artificial Intelligence;2017-02-27

4. A Multiattribute Sparse Coding Approach for Action Recognition From a Single Unknown Viewpoint;IEEE Transactions on Circuits and Systems for Video Technology;2016-08

5. Regularized Multi-view Multi-metric Learning for Action Recognition;2014 22nd International Conference on Pattern Recognition;2014-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3