Affiliation:
1. College of Communication Engineering, Jilin University, Changchun 130012, P. R. China
2. Institute of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, P. R. China
Abstract
In heterogeneous wireless sensor networks, the data collection method based on compressed sensing technology is susceptible to packet loss and noise, which leads to a decrease in data reconstruction accuracy in unreliable links. Combining compressed sensing and matrix completion, we propose a clustering optimization algorithm based on structured noise matrix completion, in which the cluster head transmits the compressed sampling data and compression strategy to the base station. The algorithm we proposed can reduce the energy consumption of the node in the process of data collection, redundant data and transmission delay. The rank-1 matrix completion algorithm constructs an extremely sparse observation matrix, which is adopted by the sink node to complete the reconstruction of the whole network data. Simulation experiments show that the proposed algorithm reduces network transmission data, balances node energy consumption, improves data transmission efficiency and reconstruction accuracy, and extends the network life cycle.
Funder
the Fundamental Research Funds of Jilin University
the National Natural Science Foundation of China
the science and technology project of the Education Department of Jilin Province
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献