Error-Correcting Graph Isomorphism Using Decision Trees

Author:

Messmer B. T.1,Bunke H.1

Affiliation:

1. Institut für Informatik und Angewandte Mathematik, Universität Bern, Neubrückstrasse 10, CH-3012 Bern, Switzerland

Abstract

In this paper we present a fast algorithm for the computation of error-correcting graph isomorphisms. The new algorithm is an extension of a method for exact subgraph isomorphism detection from an input graph to a set of a priori known model graphs, which was previously developed by the authors. Similar to the original algorithm, the new method is based on the idea of creating a decision tree from the model graphs. This decision tree is compiled off-line in a preprocessing step. At run time, it is used to find all error-correcting graph isomorphisms from an input graph to any of the model graphs up to a certain degree of distortion. The main advantage of the new algorithm is that error-correcting graph isomorphism detection is guaranteed to require time that is only polynomial in terms of the size of the input graph. Furthermore, the time complexity is completely independent of the number of model graphs and the number of edges in each model graph. However, the size of the decision tree is exponential in the size of the model graphs and the degree of error. Nevertheless, practical experiments have indicated that the method can be applied to graphs containing up to 16 vertices.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online English Vocabularies Autonomous Learning Model Based on EM Algorithm;Journal of Physics: Conference Series;2019-02

2. Graph-based methods for protein structure comparison;Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery;2013-07-26

3. Pattern analysis with graphs: Parallel work at Bern and York;Pattern Recognition Letters;2012-05

4. A binary linear programming formulation of the graph edit distance;IEEE Transactions on Pattern Analysis and Machine Intelligence;2006-08

5. Common subgraph isomorphism detection by backtracking search;Software: Practice and Experience;2004-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3