Affiliation:
1. Facultad de Ingeniería, Universidad de la República, Uruguay
2. Duke University, NC, USA
Abstract
We present a computer-aided detection pipeline for polyp detection in Computer tomographic colonography. The first stage of the pipeline consists of a simple colon segmentation technique that enhances polyps, which is followed by an adaptive-scale candidate polyp delineation, in order to capture the appropriate polyp size. In the last step, candidates are classified based on new texture and geometric features that consider both the information in the candidate polyp location and its immediate surrounding area. The system is tested with ground truth data, including flat and small polyps which are hard to detect even with optical colonoscopy. We achieve 100% sensitivity for polyps larger than 6 mm in size with just 0.9 false positives per case, and 93% sensitivity with 2.8 false positives per case for polyps larger than 3 mm in size.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献