Semi-Supervised Point Prototype Clustering

Author:

Bensaid Amine M.1,Bezdek James C.2

Affiliation:

1. Division of Computer Science and Math, School of Science & Engineering, Al Akhawayn University, Ifrane 53000, Morocco

2. Department of Computer Science, University of West Florida, Pensacola, FL 32514, USA

Abstract

This paper describes a class of models we call semi-supervised clustering. Algorithms in this category are clustering methods that use information possessed by labeled training data Xd⊂ ℜp as well as structural information that resides in the unlabeled data Xu⊂ ℜp. The labels are used in conjunction with the unlabeled data to help clustering algorithms partition Xu ⊂ ℜp which then terminate without the capability to label other points in ℜp. This is very different from supervised learning, wherein the training data subsequently endow a classifier with the ability to label every point in ℜp. The methodology is applicable in domains such as image segmentation, where users may have a small set of labeled data, and can use it to semi-supervise classification of the remaining pixels in a single image. The model can be used with many different point prototype clustering algorithms. We illustrate how to attach it to a particular algorithm (fuzzy c-means). Then we give two numerical examples to show that it overcomes the failure of many point prototype clustering schemes when confronted with data that possess overlapping and/or non uniformly distributed clusters. Finally, the new method compares favorably to the fully supervised k nearest neighbor rule when applied to the Iris data.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-supervised Learning in Computer-aided Diagnosis;2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE);2021-01-15

2. Semi-supervised learning in knowledge discovery;Fuzzy Sets and Systems;2005-01

3. Approaches to Semi-supervised Learning of Fuzzy Classifiers;KI 2003: Advances in Artificial Intelligence;2003

4. Reclassification as Supervised Clustering;Neural Computation;2000-11-01

5. Partially Supervised Text Classification: Combining Labeled and Unlabeled Documents Using an EM-like Scheme;Machine Learning: ECML 2000;2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3