A New Feature Selection Approach to Naive Bayes Text Classifiers

Author:

Zhang Lungan1,Jiang Liangxiao2,Li Chaoqun3

Affiliation:

1. Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences, Wuhan, Hubei 430074, P. R. China

2. Department of Computer Science, China University of Geosciences, Wuhan, Hubei 430074, China

3. Department of Mathematics, China University of Geosciences, Wuhan, Hubei 430074, P. R. China

Abstract

Handling text data is a challenge for machine learning because text data is high dimensional in many cases. Feature selection has been approved to be an effective approach to handle high-dimensional data. Feature selection approaches can be broadly divided into two categories: filter approaches and wrapper approaches. Generally, wrapper approaches have superior accuracy compared to filters, but filters always run faster than wrapper approaches. In order to integrate the advantages of filter approaches and wrapper approaches, we propose a gain ratio-based hybrid feature selection approach to naive Bayes text classifiers. The hybrid feature selection approach uses base classifiers to evaluate feature subsets like wrapper approaches, but it need not repeatedly search feature subsets and build base classifiers. The experimental results on large suite of benchmark text datasets show that the proposed hybrid feature selection approach significantly improves the classification accuracy of the original naive Bayes text classifiers while does not incur the high time complexity that characterizes wrapper approaches.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3