AN ENHANCED LIPSCHITZ EMBEDDING CLASSIFIER FOR MULTI-EMOTION SPEECH ANALYSIS

Author:

YOU MINGYU12,LI GUO-ZHENG1,YANG JACK Y.3,YANG MARY QU4

Affiliation:

1. Department of Control Science & Engineering, Tongji University, Shanghai 201804, P. R. China

2. State Key Lab. for Novel Software Technology, Nanjing University, Nanjing 210093, P. R. China

3. Harvard Medical School, Harvard University, Cambridge, Massachusetts 02140, USA

4. National Human Genome Research Institute, National Institutes of Health (NIH) U.S., Department of Health and Human Services, Bethesda, MD 20852, USA

Abstract

This paper proposes an Enhanced Lipschitz Embedding based Classifier (ELEC) for the classification of multi-emotions from speech signals. ELEC adopts geodesic distance to preserve the intrinsic geometry at all scales of speech corpus, instead of Euclidean distance. Based on the minimal geodesic distance to vectors of different emotions, ELEC maps the high dimensional feature vectors into a lower space. Through analyzing the class labels of the neighbor training vectors in the compressed low space, ELEC classifies the test data into six archetypal emotional states, i.e. neutral, anger, fear, happiness, sadness and surprise. Experimental results on clear and noisy data set demonstrate that compared with the traditional methods of dimensionality reduction and classification, ELEC achieves 15% improvement on average for speaker-independent emotion recognition and 11% for speaker-dependent.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Pattern Mining Approach for Improving Speech Emotion Recognition;International Journal of Pattern Recognition and Artificial Intelligence;2022-11

2. AHRNN: Attention‐Based Hybrid Robust Neural Network for emotion recognition;Cognitive Computation and Systems;2022-02-22

3. Speech Emotion Feature Analysis Based on Emotion Fingerprints;IOP Conference Series: Materials Science and Engineering;2018-11-05

4. PHONETIC SEGMENTATION OF EMOTIONAL SPEECH WITH HMM-BASED METHODS;International Journal of Pattern Recognition and Artificial Intelligence;2010-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3