Spectral Spatio-Temporal Fire Model for Video Fire Detection

Author:

Wu Zhaohui12,Song Tao3,Wu Xiaobo1,Shao Xuqiang4,Liu Yan2

Affiliation:

1. China Academy of Transportation Sciences, Beijing, 100029, P. R. China

2. State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, P. R. China

3. Information Engineering Academy, Zhengzhou University, Zhenzhou, 450001, P. R. China

4. School of Control and Computer Engineering, North China Electric Power University, Baodong, 071003, P. R. China

Abstract

Fire detection technology aroused people’s attention increasingly. The main challenge of the fire detection systems is how to reduce false alarms caused by objects like fire’s colors. Most existing algorithms used only features of fire in visual field. In this work, we put forward a new algorithm to detect dynamic fire from the surveillance video based on the combination of radiation domain features model. First, a fire color model is used to extract flame-like pixels as candidate areas in YCbCr space. Second, we convert the candidate regions from the traditional color space into radiation domain in advance by camera calibration. And we use seven features to model the spectral spatio-temporal model of the fire to more accurately characterize the physical and optical properties of the fire. Finally, we choose a two-class SVM classifier to identify the fire from the candidate areas and use a radial basis function kernel to improve the accuracy of the recognition. Two different sets of data are used to validate the algorithm we proposed. And the experimental results indicate that our method performs well in video fire surveillance.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3