Fisher Motion Descriptor for Multiview Gait Recognition

Author:

Castro F.M.1,Marín-Jiménez M.J.2,Mata N.Guil1,Muñoz-Salinas R.2

Affiliation:

1. Department of Computer Architecture, University of Malaga, 29071, Spain

2. Department of Computing and Numerical Analysis, University of Cordoba, 14071, Spain

Abstract

The goal of this paper is to identify individuals by analyzing their gait. Instead of using binary silhouettes as input data (as done in many previous works) we propose and evaluate the use of motion descriptors based on densely sampled short-term trajectories. We take advantage of state-of-the-art people detectors to define custom spatial configurations of the descriptors around the target person, obtaining a rich representation of the gait motion. The local motion features (described by the Divergence-Curl-Shear descriptor [M. Jain, H. Jegou and P. Bouthemy, Better exploiting motion for better action recognition, in Proc. IEEE Conf. Computer Vision Pattern Recognition (CVPR) (2013), pp. 2555–2562.]) extracted on the different spatial areas of the person are combined into a single high-level gait descriptor by using the Fisher Vector encoding [F. Perronnin, J. Sánchez and T. Mensink, Improving the Fisher kernel for large-scale image classification, in Proc. European Conf. Computer Vision (ECCV) (2010), pp. 143–156]. The proposed approach, coined Pyramidal Fisher Motion, is experimentally validated on ‘CASIA’ dataset [S. Yu, D. Tan and T. Tan, A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition, in Proc. Int. Conf. Pattern Recognition, Vol. 4 (2006), pp. 441–444]. (parts B and C), ‘TUM GAID’ dataset, [M. Hofmann, J. Geiger, S. Bachmann, B. Schuller and G. Rigoll, The TUM Gait from Audio, Image and Depth (GAID) database: Multimodal recognition of subjects and traits, J. Vis. Commun. Image Represent. 25(1) (2014) 195–206]. ‘CMU MoBo’ dataset [R. Gross and J. Shi, The CMU Motion of Body (MoBo) database, Technical Report CMU-RI-TR-01-18, Robotics Institute (2001)]. and the recent ‘AVA Multiview Gait’ dataset [D. López-Fernández, F. Madrid-Cuevas, A. Carmona-Poyato, M. Marín-Jiménez and R. Muñoz-Salinas, The AVA multi-view dataset for gait recognition, in Activity Monitoring by Multiple Distributed Sensing, Lecture Notes in Computer Science (Springer, 2014), pp. 26–39]. The results show that this new approach achieves state-of-the-art results in the problem of gait recognition, allowing to recognize walking people from diverse viewpoints on single and multiple camera setups, wearing different clothes, carrying bags, walking at diverse speeds and not limited to straight walking paths.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3