An Investigation of Imbalanced Ensemble Learning Methods for Cross-Project Defect Prediction

Author:

Qiu Shaojian1ORCID,Lu Lu1,Jiang Siyu2,Guo Yang1

Affiliation:

1. School of Computer Science and Engineering, South China University of Technology, Guangzhou 510000, P. R. China

2. School of Software Engineering, South China University of Technology, Guangzhou 510000, P. R. China

Abstract

Machine-learning-based software defect prediction (SDP) methods are receiving great attention from the researchers of intelligent software engineering. Most existing SDP methods are performed under a within-project setting. However, there usually is little to no within-project training data to learn an available supervised prediction model for a new SDP task. Therefore, cross-project defect prediction (CPDP), which uses labeled data of source projects to learn a defect predictor for a target project, was proposed as a practical SDP solution. In real CPDP tasks, the class imbalance problem is ubiquitous and has a great impact on performance of the CPDP models. Unlike previous studies that focus on subsampling and individual methods, this study investigated 15 imbalanced learning methods for CPDP tasks, especially for assessing the effectiveness of imbalanced ensemble learning (IEL) methods. We evaluated the 15 methods by extensive experiments on 31 open-source projects derived from five datasets. Through analyzing a total of 37504 results, we found that in most cases, the IEL method that combined under-sampling and bagging approaches will be more effective than the other investigated methods.

Funder

National Nature Science Foundation of China

Guangdong Province Application Major Fund

Guangzhou Produce & Research Fund

Zhongshan Produce & Research Fund

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3