GAL: NETWORKS THAT GROW WHEN THEY LEARN AND SHRINK WHEN THEY FORGET

Author:

ALPAYDIN ETHEM1

Affiliation:

1. Department of Computer Engineering, Boǧaziçi University TR-80815, Bebek, Istanbul, Turkey

Abstract

Learning when limited to modification of some parameters has a limited scope; capability to modify the system structure is also needed to get a wider range of the learnable. In the case of artificial neural networks, learning by iterative adjustment of synaptic weights can only succeed if the network designer predefines an appropriate network structure, i.e. the number of hidden layers, units, and the size and shape of their receptive and projective fields. This paper advocates the view that the network structure should not, as is usually done, be determined by trial-and-error but should be computed by the learning algorithm. Incremental learning algorithms can modify the network structure by addition and/or removal of units and/or links. A survey of current connectionist literature is given on this line of thought. “Grow and Learn” (GAL) is a new algorithm that learns an association at one shot due to its being incremental and using a local representation. During the so-called “sleep” phase, units that were previously stored but which are no longer necessary due to recent modifications are removed to minimize network complexity. The incrementally constructed network can later be finetuned off-line to improve performance. Another method proposed that greatly increases recognition accuracy is to train a number of networks and vote over their responses. The algorithm and its variants were tested on recognition of handwritten numerals and seem promising especially in terms of learning speed. This makes the algorithm attractive for on-line learning tasks, e.g. in robotics. The biological plausibility of incremental learning is also discussed briefly.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3