MORPHOLOGICAL STRUCTURE RECONSTRUCTION OF RETINAL VESSELS IN FUNDUS IMAGES

Author:

FANG BIN1,YOU XINGE12,TANG YUAN YAN1,CHEN WEN SHENG34

Affiliation:

1. College of Computer Science, Chongqing University, 400044, P. R. China

2. Faculty of Mathematics and Computer Science, Hubei University, 430062, P. R. China

3. College of Science, Shenzhen University Shenzhen, P. R. China, 518060, P. R. China

4. Key Laboratory of Mathematics Mechanization, CAS, Beijing 100080, P. R. China

Abstract

Vessels in retinal fundus images are useful in revealing the severity of eye-related diseases. In addition, they can act as landmarks for localizing lesions or the central vision area, and guide laser treatment of neovascularization. In this paper, we propose a two-stage scheme to extract vessels and reconstruct the morphological structure of vessels in retinal images. First, we employ mathematical morphology techniques to highlight large and small vessels with respect to their spatial properties. Different curvature response between vessel and noise patterns allows the use of curvature evaluation to remove enhanced vessel-like noise. A set of linear filters finalize the vessel map. However, the resulting vascular structure is incomplete of some important features in bifurcation points and central reflex. In order to rectify the pitfall, a reconstruction process is performed using dynamic local region growth to recover the morphological structure of vessels. Average performance of our method to extract vessels is 83.7% of TPR(True positive rate) and 3.8% of FPR(False positive rate) for 35 retinal images which include 21 abnormal images.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3