A NOVEL ALGORITHM FOR EFFECTIVE BALL TRACKING

Author:

TONG XIAOFENG1,WANG TAO1,LI WENLONG1,ZHANG YIMIN1

Affiliation:

1. Intel China Research Center, Beijing 100080, P. R. China

Abstract

A novel method is proposed to achieve robust and real-time ball tracking in broadcast soccer videos. In sports video, the soccer ball is small, often occluded, and with high motion speed. Thus, it is difficult to detect the sole ball in a single frame. To solve this problem, rather than locate the ball in one of several frames through detection or tracking, we find the ball through optimizing its motion trajectory in successive frames. The proposed method includes three level processes: object level, intra-trajectory level, and inter-trajectory level processing. In object level, multiple objects instead of a single ball are detected and all of them are taken as ball candidates through shape and color features identification. Then at intra-trajectory level, each ball candidate is tracked by a Kalman filter and verified by detection in successive frames, which results in lots of initial short trajectories in a video shot. These trajectories are thereafter scored and filtered according to their length and spatial-temporal relationship in a time-line model. With these trajectories, we construct a distance graph, in which a node represents a trajectory, and an edge means distance between two trajectories. We then get the optimal path using the Dijkstra algorithm in the graph at the inter-trajectory level. The optimal path is composed by a sequence of initial trajectories which make the whole route smooth and long in duration. To get a complete and reasonable path, we finally apply cubic spline interpolation to bridge the gap between adjacent trajectories (the duration corresponding to when the ball is occluded). We select three representative real FIFA2006 soccer video clips (containing a total of 16,500 frames) and manually elaborately labeling each frame in it, and take it as ground-truth to evaluate the algorithm. The average F-score is 80.59%. The algorithm was used in our soccer analysis system and tested on a wide range of real soccer videos, and all the results are satisfied. The algorithm is effective and its whole speed far exceeds real-time, 35.6 fps on mpeg2 data on the Intel Conroe platform.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Reference2 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial intelligence applications in the football codes: A systematic review;Journal of Sports Sciences;2024-07-02

2. An Improved A-Star Algorithm for Complete Coverage Path Planning of Unmanned Ships;International Journal of Pattern Recognition and Artificial Intelligence;2022-02-23

3. A New Tracking Algorithm Based on Improved Fuzzy C-Means Dynamic Kalman Filter in Sport Video;Mathematical Problems in Engineering;2021-04-05

4. Accurate ball tracking in volleyball actions to support referees;Opto-Electronics Review;2018-12

5. TRACKING MULTIPLE PERSONS BASED ON ATTRIBUTED RELATIONAL GRAPH;International Journal of Pattern Recognition and Artificial Intelligence;2011-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3