Keypoints-Based Image Passive Forensics Method for Copy-Move Attacks

Author:

Wang Xiaofeng1,He Guanghui1,Tang Chao1,Han Yali1,Wang Shangping1

Affiliation:

1. School of Science, Xi’an University of Technology, Xi’an, Shaanxi 710048, P. R. China

Abstract

A novel image passive forensics method for copy-move forgery detection is proposed. The proposed method combines block matching technology and feature point matching technology, and breaks away from the general framework of the visual feature-based approach that used local visual feature such as SIFT and followed by a clustering procedure to group feature points that are spatially close. In our work, image keypoints are extracted using Harris detector, and the statistical features of keypoint neighborhoods are used to generate forensics features. Then we proposed a new forensics features matching approach, in which, a region growth technology and a mismatch checking approach are developed to reduce mismatched keypoints and improve detected accuracy. We also develop a duplicate region detection method based on the distance frequency of corresponding keypoint pairs. The proposed method can detect duplicate regions for high resolution images. It has higher detection accuracy and computation efficiency. Experimental results show that the proposed method is robust for content-preserving manipulations such as JPEG compression, gamma adjustment, filtering, luminance enhancement, blurring, etc.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Copy–move forgery detection in digital image forensics: A survey;Multimedia Tools and Applications;2024-02-07

2. A self-adaptive tampering detection algorithm based on image segmentation and feature point matching;International Conference on Algorithm, Imaging Processing, and Machine Vision (AIPMV 2023);2024-01-09

3. Survey on image copy-move forgery detection;Multimedia Tools and Applications;2023-08-18

4. A Novel Face Recognition Model Based on Feature Registration;2023 International Conference on Communications, Computing and Artificial Intelligence (CCCAI);2023-06

5. A Novel Copy–Move Forgery Detection Algorithm via Gradient-Hash Matching and Simplified Cluster-Based Filtering;International Journal of Pattern Recognition and Artificial Intelligence;2023-04-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3