Searching for Cerebrovascular Disease Optimal Treatment Recommendations Applying Partially Observable Markov Decision Processes

Author:

Victorio-Meza Hermilo1,Mejía-Lavalle Manuel1,Martínez Rebollar Alicia1,Ortega Andrés Blanco1,Lagunas Obdulia Pichardo2,Sidorov Grigori2

Affiliation:

1. Tecnológico Nacional de México/Centro Nacional de, Investigación y Desarrollo Tecnológico, Interior Internado Palmira S/N, Col. Palmira, Cuernavaca, Morelos 62490, México

2. Instituto Politécnico Nacional, Ciudad de México, México

Abstract

Partially observable Markov decision processes (POMDPs) are mathematical models for the planning of action sequences under conditions of uncertainty. Uncertainty in POMDPs is manifested in two ways: uncertainty in the perception of model states and uncertainty in the effects of actions on states. The diagnosis and treatment of cerebral vascular diseases (CVD) present this double condition of uncertainty, so we think that POMDP is the most suitable method to model them. In this paper, we propose a model of CVD that is based on observations obtained from neuroimaging studies such as computed tomography, magnetic resonance and ultrasound. The model is designed as a POMDP because the health status of the patient is not directly observable, and only can be deduced, with some probability, from the observations in the cerebral images. The components of the model (states, observations, actions, etc.) were defined based on specialized literature. A diagnosis of the patient’s health status is made and the most appropriate action for the recovery of health is recommended after introducing the observations when operating the model. Consultation of the probable state of health of the patient and alternative actions is also allowed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scalable grid‐based approximation algorithms for partially observable Markov decision processes;Concurrency and Computation: Practice and Experience;2021-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3