Dynamic Ensemble Selection and Data Preprocessing for Multi-Class Imbalance Learning

Author:

Cruz Rafael M. O.1,Souza Mariana A.2ORCID,Sabourin Robert1,Cavalcanti George D. C.2

Affiliation:

1. Laboratoire d’Imagerie, de Vision et d’Intelligence Artificielle, École de Technologie Supérieure, Université du Québec, Montreal, QC, Canada H3C 1K3, Canada

2. Centro de Informática, Universidade Federal de Pernambuco, Recife, PE 50.670-420, Brazil

Abstract

Class imbalance refers to classification problems in which many more instances are available for certain classes than for others. Such imbalanced datasets require special attention because traditional classifiers generally favor the majority class which has a large number of instances. Ensemble of classifiers has been reported to yield promising results. However, the majority of ensemble methods applied to imbalance learning are static ones. Moreover, they only deal with binary imbalanced problems. Hence, this paper presents an empirical analysis of Dynamic Selection techniques and data preprocessing methods for dealing with multi-class imbalanced problems. We considered five variations of preprocessing methods and 14 Dynamic Selection schemes. Our experiments conducted on 26 multi-class imbalanced problems show that the dynamic ensemble improves the AUC and the [Formula: see text]-mean as compared to the static ensemble. Moreover, data preprocessing plays an important role in such cases.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3