STOCK MARKET PREDICTION BY A MIXTURE OF GENETIC-NEURAL EXPERTS

Author:

ARMANO GIULIANO1,MURRU ANDREA1,ROLI FABIO1

Affiliation:

1. DIEE, Department of Electrical and Electronic Engineering, University of Cagliari Piazza d'Armi, I-09123, Cagliari, Italy

Abstract

In this paper, a hybrid approach to stock market forecasting is presented. It entails utilizing a mixture of hybrid experts, each expert embedding a genetic classifier coupled with an artificial neural network. Information retrieved from technical analysis is supplied as input to genetic classifiers, while past stock market prices — together with other relevant data — are used as input to neural networks. In this way it is possible to implement a strategy that resembles the one used by human experts. In particular, genetic classifiers based on technical-analysis domain knowledge are used to identify quasi-stationary regimes within the financial data series, whereas neural networks are designed to perform context-dependent predictions. For this purpose, a novel kind of feedforward artificial neural network has been defined whereby effective stock market predictors can be implemented without the need for complex recurrent neural architectures. Experiments were performed on a major Italian stock market index, also taking into account trading commissions. The results point to the good forecasting capability of the proposed approach, which allowed outperforming the well known buy-and-hold strategy, as well as predictions obtained using recurrent neural networks.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Artificial Intelligence in Stock Market Forecasting: A Critique, Review, and Research Agenda;Journal of Risk and Financial Management;2021-11-04

2. Sailing through the COVID-19 Crisis by Using AI for Financial Market Predictions;Mathematical Problems in Engineering;2020-12-30

3. Stock Price Pattern Prediction Based on Complex Network and Machine Learning;Complexity;2019-05-28

4. iTrade;Intelligent Systems;2018

5. A Novel Representation of Classifier Conditions Named Sensory Tag for the XCS in Multistep Problems;Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation;2015-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3