WAVELET-BASED MULTIRESOLUTION HISTOGRAM FOR FAST IMAGE RETRIEVAL

Author:

JAIN PAWAN1,MERCHANT S. N.1

Affiliation:

1. SPANN Lab, Electrical Engineering Department, IIT Bombay, 400076, India

Abstract

Most of the content-based image retrieval systems require a distance computation of feature vectors for each candidate image in the image database. This exhaustive search is highly time-consuming and inefficient. This limits the usefulness of such system. Thus there is a growing need for a fast image retrieval system. Multiresolution data-structure algorithm provides a good solution to the above problem. In this paper we propose a wavelet-based multiresolution data-structure algorithm. Wavelet-based multiresolution data-structure further reduce the number of computation by around 50%. In the proposed approach we reuse the information obtained at lower resolution levels to calculate the distance at a higher resolution level. Apart from this, the proposed structure saves memory overheads by about 50% over multiresolution data-structure algorithm. The proposed algorithm can be easily combined with other algorithms for performance enhancement.4 In this paper we use the proposed technique to match luminance histogram for image retrieval. Fuzzy histograms enhances performance by considering the similarity between neighboring bins. We have extended the proposed approach to fuzzy histograms for better performance.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning search popularity for personalized query completion in information retrieval;Journal of Intelligent & Fuzzy Systems;2017-09-22

2. Implementation of 2D Discrete Wavelet Transform by Number Theoretic Transform and 2D Overlap-Save Method;Mathematical Problems in Engineering;2014

3. WAVELET DECOMPOSITION OF PSEUDO-MOTION IMAGE AND APPLICATION TO FREQUENCY SEGMENTATION;International Journal of Pattern Recognition and Artificial Intelligence;2011-11

4. Status of pattern recognition with wavelet analysis;Frontiers of Computer Science in China;2008-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3