Affiliation:
1. Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
Abstract
A neuro-wavelet supervised classifier is proposed for land cover classification of multispectral remote sensing images. Features extracted from the original pixels information using wavelet transform (WT) are fed as input to a feed forward multi-layer neural network (MLP). The WT basically provides the spatial and spectral features of a pixel along with its neighbors and these features are used for improved classification. For testing the performance of the proposed method, we have used two IRS-1A satellite images and one SPOT satellite image. Results are compared with those of the original spectral feature based classifiers and found to be consistently better. Simulation study revealed that Biorthogonal 3.3 (Bior3.3) wavelet in combination with MLP performed better compared to all other wavelets. Results are evaluated visually and quantitatively with two measurements, β index of homogeneity and Davies–Bouldin (DB) index for compactness and separability of classes. We suggested a modified β index in accessing the percentage of accuracy (PAβ) of the classified images also.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献