Stochastic sub-sampled Newton method with variance reduction

Author:

Luo Zhijian1ORCID,Qian Yuntao1

Affiliation:

1. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, P. R. China

Abstract

Stochastic optimization on large-scale machine learning problems has been developed dramatically since stochastic gradient methods with variance reduction technique were introduced. Several stochastic second-order methods, which approximate curvature information by the Hessian in stochastic setting, have been proposed for improvements. In this paper, we introduce a Stochastic Sub-Sampled Newton method with Variance Reduction (S2NMVR), which incorporates the sub-sampled Newton method and stochastic variance-reduced gradient. For many machine learning problems, the linear time Hessian-vector production provides evidence to the computational efficiency of S2NMVR. We then develop two variations of S2NMVR that preserve the estimation of Hessian inverse and decrease the computational cost of Hessian-vector product for nonlinear problems.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3