Affiliation:
1. Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, 910-8507 Fukui, Japan
Abstract
In this paper, it is shown how continuous Clifford Cl3,0-valued admissible wavelets can be constructed using the similitude group SIM(3), a subgroup of the affine group of ℝ3. We express the admissibility condition in terms of a Cl3,0Clifford Fourier transform and then derive a set of important properties such as dilation, translation and rotation covariance, a reproducing kernel, and show how to invert the Clifford wavelet transform of multivector functions. We invent a generalized Clifford wavelet uncertainty principle. For scalar admissibility constant, it sets bounds of accuracy in multivector wavelet signal and image processing. As concrete example, we introduce multivector Clifford Gabor wavelets, and describe important properties such as the Clifford Gabor transform isometry, a reconstruction formula, and an uncertainty principle for Clifford Gabor wavelets.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献