Penalized empirical relaxed greedy algorithm for fixed design Gaussian regression

Author:

Chen Chen12,Chen Na1

Affiliation:

1. Faculty of Mathematics and Statistics, Hubei University, Wuhan 430062, P. R. China

2. School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan 430074, P. R. China

Abstract

Compared with [Formula: see text]-regularization algorithm, greedy algorithm has great advantage in computational complexity. In this paper, we consider the penalized empirical relaxed greedy algorithm, and analyze its efficiency in the fixed design Gaussian regression problem. Through a careful analysis, we provide the oracle inequalities in the case of finite and infinite dictionary, respectively via choosing appropriate number of greedy iterations. Relying on those oracle inequalities, we obtain the learning rate of the algorithm when the target function lies in the convex hull of the dictionary. Our results show that the error has [Formula: see text] decay, which is the near optimal convergence rate in the literature.

Funder

National Nature Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimality of the rescaled pure greedy learning algorithms;International Journal of Wavelets, Multiresolution and Information Processing;2022-11-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3