Affiliation:
1. College of Information Engineering, China Jiliang University, Hangzhou 310018, P. R. China
2. College of Computer Science, Zhejiang University, Hangzhou 310027, P. R. China
Abstract
Hyperspectral image (HSI) classification draws a lot of attentions in the past decades. The classical problem of HSI classification mainly focuses on a single HSI scene. In recent years, cross-scene classification becomes a new problem, which deals with the classification models that can be applied across different but highly related HSI scenes sharing common land cover classes. This paper presents a cross-scene classification framework combining spectral–spatial feature extraction and manifold-constrained feature subspace learning. In this framework, spectral–spatial feature extraction is completed using three-dimensional (3D) wavelet transform while manifold-constrained feature subspace learning is implemented via multitask nonnegative matrix factorization (MTNMF) with manifold regularization. In 3D wavelet transform, we drop some coefficients corresponding to high frequency in order to avoid data noise. In feature subspace learning, a common dictionary (basis) matrix is shared by different scenes during the nonnegative matrix factorization, indicating that the highly related scenes should share than same low-dimensional feature subspace. Furthermore, manifold regularization is applied to force the consistency across the scenes, i.e. all pixels representing the same land cover class should be similar in the low-dimensional feature subspace, though they may be drawn from different scenes. The experimental results show that the proposed method performs well in cross-scene HSI datasets.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献