VARIABLE SAMPLING OF THE EMPIRICAL MODE DECOMPOSITION OF TWO-DIMENSIONAL SIGNALS

Author:

LINDERHED ANNA1

Affiliation:

1. Swedish Defence Research Agency, P. O. Box 1165, SE-581 11 Linköping, Sweden

Abstract

Previous work on empirical mode decomposition in two dimensions typically generates a residue with many extrema points. In this paper we propose an improved method to decompose an image into a number of intrinsic mode functions and a residue image with a minimum number of extrema points. We further propose a method for the variable sampling of the two-dimensional empirical mode decomposition. Since traditional frequency concept is not applicable in this work, we introduce the concept of empiquency, shortform for empirical mode frequency, to describe the signal oscillations. The very special properties of the intrinsic mode functions are used for variable sampling in order to reduce the number of parameters to represent the image. This is done blockwise using the occurrence of extrema points of the intrinsic mode function to steer the sampling rate of the block. A method of using overlapping 7 × 7 blocks is introduced to overcome blocking artifacts and to further reduce the number of parameters required to represent the image. The results presented here shows that an image can be successfully decomposed into a number of intrinsic mode functions and a residue image with a minimum number of extrema points. The results also show that subsampling offers a way to keep the total number of samples generated by empirical mode decomposition approximately equal to the number of pixels of the original image.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3