ROI-BASED 3D HUMAN BRAIN MAGNETIC RESONANCE IMAGES COMPRESSION USING ADAPTIVE MESH DESIGN AND REGION-BASED DISCRETE WAVELET TRANSFORM

Author:

FATEMIZADEH EMAD1,SHOOSHTARI PARISA2

Affiliation:

1. School of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran

2. Biomedical Engineering, Biological Signal and Image Processing Lab (BiSIPL), School of Electrical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran

Abstract

Due to the large volume required for medical images for transmission and archiving purposes, the compression of medical images is known as one of the main concepts of medical image processing. Lossless compression methods have the drawback of a low compression ratio. In contrast, lossy methods have a higher compression ratio and suffer from lower quality of the reconstructed images in the receiver. Recently, some selective compression methods have been proposed in which the main image is divided into two separate regions: Region of Interest (ROI), which should be compressed in a lossless manner, and Region of Background (ROB), which is compressed in a lossy manner with a lower quality. In this research, we introduce a new selective compression method to compress 3D brain MR images. To this aim, we design an adaptive mesh on the first slice and estimate the gray levels of the next slices by computing the mesh element's deformations. After computing the residual image, which is the difference between the main image and the estimated one, we transform it to the wavelet domain using a region-based discrete wavelet transform (RBDWT). Finally, the wavelet coefficients are coded by an object-based SPIHT coder.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Zerotree wavelet image compression with weighted sub-block-trees and adaptive coding order;International Journal of Wavelets, Multiresolution and Information Processing;2016-07

2. Detection of Left-Sided and Right-Sided Hearing Loss via Fractional Fourier Transform;Entropy;2016-05-19

3. MULTIPLE COMPONENT PREDICTIVE CODING OF IMAGES;International Journal of Wavelets, Multiresolution and Information Processing;2013-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3