Affiliation:
1. Department of Mathematics, Hasanuddin University, Makassar 90245, Indonesia
2. Division of Mathematical Sciences, Osaka Kyoiku University, Osaka 582-8582, Japan
Abstract
Based on the relationship between the Fourier transform (FT) and linear canonical transform (LCT), a logarithmic uncertainty principle and Hausdorff–Young inequality in the LCT domains are derived. In order to construct the windowed linear canonical transform (WLCT), Gabor filters associated with the LCT is introduced. Using the basic connection between the classical windowed Fourier transform (WFT) and the WLCT, a new proof of inversion formula for the WLCT is provided. This relation allows us to derive Lieb’s uncertainty principle associated with the WLCT. Some useful properties of the WLCT such as bounded, shift, modulation, switching, orthogonality relation, and characterization of range are also investigated in detail. By the Heisenberg uncertainty principle for the LCT and the orthogonality relation property for the WLCT, the Heisenberg uncertainty principle for the WLCT is established. This uncertainty principle gives information how a complex function and its WLCT relate. Lastly, the logarithmic uncertainty principle associated with the WLCT is obtained.
Funder
Hibah Penelitian Kompetisi Internal Tahun 2014
JSPS. KAKENHI
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献