Affiliation:
1. Department of Information Technology, Jeppiaar Institute of Technology, Anna University, Chennai 600025, India
2. Department of Computer Science and Engineering, R.M.D Engineering College, Chennai 600025, India
Abstract
People communicate their views, arguments and emotions about their everyday life on social media (SM) platforms (e.g. Twitter and Facebook). Twitter stands as an international micro-blogging service that features a brief message called tweets. Freestyle writing, incorrect grammar, typographical errors and abbreviations are some noises that occur in the text. Sentiment analysis (SA) centered on a tweet posted by the user, and also opinion mining (OM) of the customers review is another famous research topic. The texts are gathered from users’ tweets by means of OM and automatic-SA centered on ternary classifications, namely positive, neutral and negative. It is very challenging for the researchers to ascertain sentiments as a result of its limited size, misspells, unstructured nature, abbreviations and slangs for Twitter data. This paper, with the aid of the Gradient Boosted Decision Tree classifier (GBDT), proposes an efficient SA and Sentiment Classification (SC) of Twitter data. Initially, the twitter data undergoes pre-processing. Next, the pre-processed data is processed using HDFS MapReduce. Now, the features are extracted from the processed data, and then efficient features are selected using the Improved Elephant Herd Optimization (I-EHO) technique. Now, score values are calculated for each of those chosen features and given to the classifier. At last, the GBDT classifier classifies the data as negative, positive, or neutral. Experiential results are analyzed and contrasted with the other conventional techniques to show the highest performance of the proposed method.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Information Systems,Signal Processing
Cited by
94 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献