A gradient boosted decision tree-based sentiment classification of twitter data

Author:

Neelakandan S.1,Paulraj D.2

Affiliation:

1. Department of Information Technology, Jeppiaar Institute of Technology, Anna University, Chennai 600025, India

2. Department of Computer Science and Engineering, R.M.D Engineering College, Chennai 600025, India

Abstract

People communicate their views, arguments and emotions about their everyday life on social media (SM) platforms (e.g. Twitter and Facebook). Twitter stands as an international micro-blogging service that features a brief message called tweets. Freestyle writing, incorrect grammar, typographical errors and abbreviations are some noises that occur in the text. Sentiment analysis (SA) centered on a tweet posted by the user, and also opinion mining (OM) of the customers review is another famous research topic. The texts are gathered from users’ tweets by means of OM and automatic-SA centered on ternary classifications, namely positive, neutral and negative. It is very challenging for the researchers to ascertain sentiments as a result of its limited size, misspells, unstructured nature, abbreviations and slangs for Twitter data. This paper, with the aid of the Gradient Boosted Decision Tree classifier (GBDT), proposes an efficient SA and Sentiment Classification (SC) of Twitter data. Initially, the twitter data undergoes pre-processing. Next, the pre-processed data is processed using HDFS MapReduce. Now, the features are extracted from the processed data, and then efficient features are selected using the Improved Elephant Herd Optimization (I-EHO) technique. Now, score values are calculated for each of those chosen features and given to the classifier. At last, the GBDT classifier classifies the data as negative, positive, or neutral. Experiential results are analyzed and contrasted with the other conventional techniques to show the highest performance of the proposed method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Information Systems,Signal Processing

Cited by 94 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3