How to efficiently utilize electrode materials in supercapattery?

Author:

Chen Kunfeng1ORCID,Xue Dongfeng1

Affiliation:

1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun 130022, P. R. China

Abstract

Theoretical stored capacity of one electrode material is decided by their thermodynamics factors, which can be achieved only when electrode materials fully react at quite long charging time. In order to store large quantities of charges in short charging time, high-efficiency utilization of electrode materials becomes more and more important. Both fast ionic and electronic transports represent the fundamental factor for high-efficiency utilization of electrode materials. Supercapattery, showing both high power density and high energy density, includes supercapattery-type electrode materials, leading to fast redox reaction. This paper focuses on the structure design of supercapattery-type electrode materials and electrode to satisfy dynamic demand for fast redox reaction of one electrode material. The use of redox active cations and the construction of active colloidal supercapatteries are described. This work will give enlightenment to design electrochemical energy storage system for high-power and high energy applications.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3