Graphene oxide-polypyrrole composite as sulfur hosts for high-performance lithium-sulfur batteries

Author:

Wang Qian1,Yang Chengkai1,Tang Hui1,Wu Kai1,Zhou Henghui12

Affiliation:

1. College of Chemistry and Molecular Engineering Peking University, 100871 Beijing, P. R. China

2. Beijing Engineering Research Center of Power, Lithium-ion Battery, 102202 Beijing, P. R. China

Abstract

Lithium-sulfur batteries are considered as a promising candidate for the next-generation high energy density storage devices. However, they are still hindered by serious capacity decay on cycling caused by the dissolution of redox intermediates. Here, we designed a unique structure with polypyrrole (ppy) inserting into the graphene oxide (GO) sheet for accommodating sulfur. Such a sulfur host not only exhibits a good electronic and ionic conductivity, but also can suppress polysulfide dissolution effectively. With this advanced design, the composite cathode showed a high specific capacity of 548.4[Formula: see text]mA[Formula: see text]h[Formula: see text]g[Formula: see text] at 5.0 C. A stable Coulombic efficiency of [Formula: see text]99.5% and a capacity decay rate as low as 0.089% per cycle along with 300 cycles at 1.0 C were achieved for composite cathodes with 78[Formula: see text]wt.% of S. Besides, the interaction mechanism between PPy and lithium polysulfides (LPS) was investigated by density-functional theory (DFT), suggesting that only the polymerization of N atoms can bind strongly to Li ions of LPS rather than single N atoms. The 3D structure GO-PPy host with high conductivity and excellent trapping ability to LPS offered a viable strategy to design high-performance cathodes for Li–S batteries.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3