FATIGUE BEHAVIOR CHARACTERIZATION OF NITINOL FOR PERIPHERAL STENTS

Author:

PETRINI LORENZA1,WU WEI1,DORDONI ELENA1,MEOLI ALESSIO1,MIGLIAVACCA FRANCESCO1,PENNATI GIANCARLO1

Affiliation:

1. Laboratory of Biological Structure Mechanics (LaBS), Department of Structural Engineering, Politecnico di Milano, Piazza, Leonardo da Vinci 32, Milano 20133, Italy

Abstract

Nitinol stents are nowadays widely used for the treatment of occlusions in peripheral arteries. However, the expansion of this indication has also highlighted some complications. In particular, the patient daily activities expose the peripheral arteries to large and cyclic deformations which may cause long-term failure of the device and consequently re-occlusion of the artery. Accordingly, the assessment of the stent fatigue rupture is of primary importance to assure the effectiveness of stenting procedure. However the fatigue behavior characterization of Nitinol for peripheral stent is a quite difficult problem because of the complexity of the in vivo solicitations the stent is subjected to and the strong nonlinearity in the material response. In this paper we approached the problem in two steps: (i) in the first step the study of the stent solicitations under realistic (physiological) conditions was performed through the use of numerical simulations which allowed sophisticated patient-specific models of the stenting procedure; (ii) in the second step, the previous results were used for the design of an experimental campaign and the following execution of the tests for the material mechanical characterization and fatigue life study. The tests were performed on Nitinol specimens derived from the same tubes used for producing a commercial peripheral stent and created following the same procedure employed for the device. As a consequence of the small dimension of the specimens, a preliminary design of the experimental test set-up was also required. The obtained results allowed a sufficiently accurate characterization of the stent material fatigue behavior in the range of interest.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3