Interface characterization of Cu–Mo coating deposited on Ti–Al alloys by arc spraying

Author:

Bai Shengqiang1,Li Fei1,Wu Ting1,Yin Xianglin1,Shi Xun1,Chen Lidong1

Affiliation:

1. CAS Key Laboratory of Materials for Energy Conversion and State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China

Abstract

Cu – Mo pseudobinary alloys are promising candidates as electrode materials in CoSb 3-based skutterudite thermoelectric (TE) devices for TE power generation. In this study, Cu – Mo coatings were deposited onto Ti – Al substrates by applying a dual-wire electric arc spraying coating technique. The microstructure of the surfaces, cross sections and coating interfaces were analyzed by scanning electron microscopy (SEM) and energy dispersion spectrometry (EDS). Cu – Mo coatings showed a typical banded splat with compact microstructures, and have no coarse pores nor micro-cracks. The thermal shock resistance of the Cu – Mo coating was also investigated to show good combinations with Ti – Al substrates. After 50 thermal shock cycles, there were no cracks observed at the interface. In contrast, the test of the thermal shock resistance of the Cu coating on the Ti – Al substrate was also investigated. Due to a large difference in the thermal expansion coefficients between Cu and Ti – Al alloys, the Cu coating flaked from the Ti – Al substrate completely after 10 thermal shock cycles. The contact resistivity of the Ti – Al / Cu – Mo interface was about 1.6 μΩ⋅cm2 and this value was unchanged after 50 thermal shock cycles, indicating the low electric resistance and high thermal stability of the Cu – Mo / Ti – Al interface.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3