Cu-based materials as high-performance electrodes toward electrochemical energy storage

Author:

Chen Kunfeng1,Xue Dongfeng1

Affiliation:

1. State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China

Abstract

Cu -based materials, including metal Cu and semiconductors of Cu 2 O and CuO , are promising and important candidates toward practical electrochemical energy storage devices due to their abundant, low cost, easy synthesis and environmentally friendly merits. This review presents an overview of the applications of Cu -based materials in the state-of-art electrochemical energy storage, including both lithium-ion batteries and supercapacitors. The synthesis chemistry, structures and the corresponding electrochemical performances of these materials are summarized and compared. During chemical synthesis and electroactive performance measurement of Cu -based materials, we found that Cu – Cu 2 O – CuO sequence governs all related transformations. Novel water-soluble CuCl 2 supercapacitors with ultrahigh capacitance were also reviewed which can advance the understanding of intrinsic mechanism of inorganic pseudocapacitors. The major goal of this review is to highlight some recent progresses in using Cu -based materials for electrochemical energy storage.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3