Enhancement effects of two kinds of carbon black on piezoelectricity of PVDF-HFP composite films

Author:

Hu Bin1,Hu Ning23,Wu Liangke2,Cui Hao3,Ying Ji4

Affiliation:

1. College of Metallurgy and Material Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China

2. Department of Engineering Mechanics, College of Aerospace Engineering, Chongqing University, Chongqing 400044, P. R. China

3. Department of Mechanical Engineering, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522, Japan

4. Department of Mechanical Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China

Abstract

Two kinds of carbon black (CB) (i.e., CB#300 and CB#3350) were added into poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP), respectively, to improve its piezoelectricity. The results revealed that when 0.5 wt.% CB was added, the best performance of the PVDF-HFP/CB composite films was obtained. The calibrated open circuit voltage and the density of harvested power of 0.5 wt.% CB#3350 contained composite films were 204%, and 464% (AC) and 561% (DC) of those of neat PVDF-HFP films. Similarly, for 0.5 wt.% CB#300 contained films, they were 211%, and 475% (AC) and 624% (DC), respectively. The enhancement mechanisms of piezoelectricity were clarified by the observation of Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and scanning electron microscope (SEM). We found that the added CBs act as nucleate agents to promote the formation of elongated, oriented and fibrillar β-phase crystals during the fabrication process, which increase the piezoelectricity. Overdosed CBs lead to a lower crystallinity degree, resulting in the lower piezoelectricity. Compared with CB#3350, CB#300 performs slightly better, which may be ascribed to its higher specific surface area.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3