Corona product of signed graphs and its application to modeling signed networks

Author:

Adhikari Bibhas1ORCID,Singh Amrik2,Yadav Sandeep Kumar2

Affiliation:

1. Department of Mathematics, IIT Kharagpur, India

2. Department of Electrical Engineering, IIT Jodhpur, India

Abstract

The notion of corona of two graphs was introduced by Frucht and Harary in 1970. In this paper, we generalize their definition of corona product of two graphs and introduce corona product of two signed graphs by utilizing the framework of marked graphs, which was introduced by Beineke and Harary in 1978. We study structural and spectral properties of corona product of signed graphs. Further, we define signed corona graphs by considering corona product of a fixed small signed graph with itself iteratively, and we call the small graph as the seed graph for the corresponding corona product graphs. Signed corona graphs can be employed as a signed network generative model for large growing signed networks. We study structural properties of corona graphs that include statistics of signed links, all types of signed triangles and degree distribution. Besides we analyze algebraic conflict of signed corona graphs generated by specially structured seed graphs. Finally, we show that a suitable choice of a seed graph can produce corona graphs which preserve properties of real signed networks.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Discrete Mathematics and Combinatorics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Net Laplacian eigenvalues of certain corona-like products of signed graphs;Boletín de la Sociedad Matemática Mexicana;2024-08-10

2. SISSRM: Sequentially Induced Signed Subnetwork Reconstruction Model For Generating Realistic Synthetic Signed Networks;IEEE Transactions on Computational Social Systems;2024

3. Balanced and Unbalanced Triangle Count in Signed Networks;IEEE Transactions on Knowledge and Data Engineering;2023-12-01

4. Structural Reconstruction of Signed Social Networks;IEEE Transactions on Computational Social Systems;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3