On the triangles in certain types of line arrangements

Author:

Anil Kumar C. P.1ORCID

Affiliation:

1. Harish-Chandra Research Institute, Chhatnag Road Jhunsi, Prayagraj (Allahabad)-211019, Uttar Pradesh, India

Abstract

In this paper, we combinatorially describe the triangles that are present in two types of line arrangements, those which have global cyclicity and those which are infinity type line arrangements. A combinatorial nomenclature has been described for both the types and some properties of the nomenclature have been proved. Later, using the nomenclature, we describe the triangles present in both types of line arrangements in main Theorems A and B. We also prove that the set of triangles uniquely determines, in a certain precise sense, the line arrangements with global cyclicity and not the infinity type line arrangements, where counter examples have been provided. In Theorem 9.1, given a nomenclature, we characterize when a particular line symbol in the nomenclature is a line at infinity for the arrangement determined by the nomenclature.

Publisher

World Scientific Pub Co Pte Lt

Subject

Discrete Mathematics and Combinatorics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On infinity type hyperplane arrangements and convex positive bijections;Indian Journal of Pure and Applied Mathematics;2024-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3